A természetben a tápanyagláncon keresztül kialakult az energia körforgalom, melyet a napenergia tart egyensúlyban és mozgásban.
A természetben a tápanyagláncon keresztül kialakult az energia körforgalom, melyet a napenergia tart egyensúlyban és mozgásban.
A napenergia, a levegő CO2-ől, a talajból felvett víz és tápanyagból, a fotoszintézisen keresztül kialakítja a zöld tömeget az elsődleges biomasszát. Az így létrehozott biomassza látja el tápanyaggal az embereket és az állatokat, valamint alapanyaga az ipari feldolgozásnak.
A feldolgozás és tápanyag felhasználás minden egyes pontján jelentős nagyságú hulladék képződik. A növényi és állati eredetű hulladékokat nevezzük szerves hulladéknak.
Minden szerves hulladék legyen az növényi vagy állati eredetű, veszélyes hulladék. A hulladékok elbomlásakor talajvíz és levegőszennyezés lép fel.
A szerves hulladékok szaporító helyei a betegséget terjesztő szúnyogoknak és legyeknek. Aerob rothasztáskor a fehérjék bomlásából keletkező kénhidrogén és ammónia a levegőbe távozik és büdös.
A biogáz üzem azért a leghatékonyabb környezetvédelmi beruházás, mert anaerob környezetben végzi el a rothasztást talajvíz és levegőszennyezés nélkül úgy, hogy a metántermelő baktériumok tüzelőanyagot állítanak elő.
Az erjedés után visszamaradt hígtrágya a bomló anyagtól mentes, könnyen felvehető tápanyagként kerül vissza a talajba.
Anaerob rothasztásnál a kénhidrogén az iszapba visszamarad és oldott vasszulfidot képez.A metán baktériumok mérgező hatású antibiotikus hatással rendelkeznek és a biomasszában megtalálható gyommagokat, lárvákat elpusztítják. A próbaüzemelés alatt igyekeztünk mindenfajta szerves anyagot felhasználni. Az antibiotikus hatás bizonyítására a legjobb példa a nagy túlélő képességű ambrózia magja, mely teljesen csirátlanná vált, a salmonella pedig 55 ş C-os hőkezelés mellett teljesen elpusztult.
Milyen hulladékot használunk fel és hogyan történik a lebomlás?
A biogáz üzemben mindenfajta szerves anyag lebomlik, csak a lebomlás ideje és a gáztermelő képessége nem egyforma.
A szerves hulladék mennyisége lényegesen több, mint amennyit a biogáz üzem fel tudna használni, ezért a metángáz előállítás szempontjából azoknak a szerves anyagoknak van jelentőségük, amelyek ingyenesen állnak rendelkezésre és a leghatékonyabb a lebomlásuk.
A cellulóz alapú anyagok lebomlási ideje nagyon hosszú, 40-50 nap, míg az állati eredetű anyagoké 8-20 nap. A gáztermelés is hasonló. A gyorsan lebomló arányos idő alatt nagyobb mennyiségű gázt termel.
Nagyon fontos tehát, hogy a hulladékokat úgy válogassuk össze, hogy a leghatékonyabb legyen a biogáz üzem kihasználása. A legkiegyensúlyozottabb baktérium élet és gáztermelés csak több komponensű biomasszával biztosítható. A hulladékok lebontása olyan biokémiai folyamat, melyet négy egymástól jól megkülönböztethető baktériumcsoport végez el.
A négy baktériumcsoport úgy végzi a lebontást, hogy egymás anyagcsere végtermékét használják fel táplálékul, így a nagy molekulájú hulladékból a befejező metántermelő baktériummal metánt állítanak elő.
- Szénhidrátok: feladatuk a sejtek felépítése, fenntartása és energiahordozás. A szén minden szerves anyag alapvető alkatrésze, ebből épül fel a különböző szerves vegyületeken keresztül valamennyi élőlény teste. A szén körforgása a természetben az alábbiak szerint történik:
· a zöld növények a szénszükségletüket fotoszintetikusan a széndioxid asszimilációból fedezik,
· az állatoknak és heterotróf növényeknek (baktériumoknak) szervesen lekötött szénre van szükségük,
· a szervezetek rothadásával a széndioxid visszajut az atmoszférába.
-Szerves zsírok: elsődleges feladatuk az energia tárolása.
- fehérjék: bonyolult összetételű komplex óriás molekulákból tevődnek össze.
A baktérium test felépítése heterotróf növényeknek felel meg.
A baktériumtest 73-88 % víz, a szilárd anyagnak 53 % szén.
A metánbaktériumok természetes előfordulási helyei az állóvizek, tengerek fenék szintje és a bélrendszer.
A metánbaktériumok jó működéséhez az alábbi életfeltételek kellenek:
a) oxigén mentes környezet (anaerob)
b) 50 % feletti nedves közeg
c) sötétség, nagy felület, 20-30 şC feletti állandó h
őmérséklet
d) elegendő N-tartalom a sejtek felépítéséhez
e) 7-7,5 PH
A szerves anyagok anaerob kezelése a biogáz készülékek zárt rendszerében növényi tápanyagveszteség nélkül megy végbe. A mikrobiális fermentáció nem jelenti az összes anyag gázneművé alakulását, csupán a szerves anyagokban lekötött szén gázosodik el.
Milyen feltételek alapján építettük meg és hogyan működik a biogáz üzem?
A biogáz üzemet építő Bátortrade Kft. struktúrájában jelentős szerepe van a komplex mezőgazdasági termelő tevékenységnek, így jelentős mennyiségű biomassza képződik.A hulladékok szakszerű kezelése és megsemmisítése nagyon költséges.
A biogáz üzem energia termelése a magas beruházási és üzemeltetési költség miatt nem gazdaságos, annak ellenére, hogy államilag támogatott maga a beruházás és az értékesített villamos energia is.
A biogáz üzem csak akkor lehet jövedelmező, ha összeadjuk a hulladékmegsemmisítés költségét, a termelt energia bevételt és a képződött hígtrágya hasznosításából származó előnyöket.
A beruházási döntés megalapozottságához sokkal több tényező együttes megléte szükséges, mint bármilyen más üzem építésénél.
- A leglényegesebb üzemeltetési költség a szállítás költsége.
A mi üzemünkben felhasznált hulladékok közel fele az üzem szomszédságában képződik. A megtermelt hígtrágya hasznosításához 1000 ha zárt nyomóvezetékkel ellátott öntözhető szántóterület áll rendelkezésre. A kierjedt hígtrágya kijuttatásának engedélyezése ugyan olyan feltételekhez van kötve, mint a nyers hígtrágya esetében. A nitrogén terheléshez bizonyítani kell, hogy 170 kg/ha maximális kijuttatás mennyiséghez képest elegendő terület áll rendelkezésre.
Egy m32-3 % szárazanyag tartalmú hígtrágya szippantó kocsival történő kijuttatási költsége távolság függvényében 400-700 Ft, mely hatóanyagra vetítve kétszerese a jelenlegi magas műtrágya hatóanyag beszerzési árnak.
A saját hulladékon felül csak olyan hulladékokat fogadunk, aminek a megsemmisítéséért fizetnek.A jelenlegi árbevétel közel felét a hulladék megsemmisítésének bevétele teszi ki.
Amennyiben nem áll elég fizetett hulladék rendelkezésre, szükség lehet az energia növénytermesztésre. A jelenlegi magas termelési költségek miatt 40 % feletti felhasználási arány esetén a biogáz termelés már emiatt az egy többletköltség miatt is veszteséges lehet.
- Melegvíz energia helybeni hasznosíthatóságának megléte.
A biogáz energia jelenleg csak akkor értékesíthető, ha villamos energiát termelünk belőle. A biogáz elégetésénél kétszer annyi melegvíz energia képződik, mint amennyi a villamos energia. A képződött melegvíz energia 30-50 % szükséges a fermentorok fűtéséhez. A szabad melegvíz energia hőértékben megegyezik a villamos energia hőértékével, tehát fontos, hogy legyen amivel hasznosítani tudjuk.
A mi esetünkben részben ezért építettünk egy új baromfifeldolgozó üzemet.
- Lakott területtől legalább 1000 m távolságra legyen, a szükséges engedélyek csak akkor szerezhetők be.
- A villamos közműhálózati rácsatlakozás lehetősége 500 m-en belül legyen.
A magyar szabályozás szerint a megtermelt villamos energiát a szolgáltató köteles fixáron átvenni, viszont a rácsatlakozás feltételeit a szolgáltató határozza meg.
A mi esetünkben 200 m-en belül van a rácsatlakozási pont, még is az alap beruházási költség 10 %-ba került a megfelelő feltételek kiépítése.
- A biogáz üzemeltetéshez szükséges a járulékos beruházások megalapozott kalkulációja.
A biogáz üzem bekerülési költségével közel megegyező nagyságú a teljes körű hulladék fogadásának, a hígtrágya gazdaságos kijuttatásának és az egyéb infrastruktúra beruházási költsége.
A legnagyobb tévedésünk a járulékos beruházások alulértékelése volt. Nem számoltunk a környezetvédelmi és egyéb szakhatósági előírások megszigorításával.
A műszaki technikát forgalmazók is igyekeznek a lehető legkisebb beruházási költségeket kalkulálni, mivel ők csak az értékesítésben érdekeltek.
A hígtrágyás biogáz technikája nemalkalmas magasabb arányú szalmástrágya felhasználására a jelentős dugulási és felúszási meghibásodás miatt.
Tervezett tevékenységek és mennyiségek:
- Nem veszélyes hulladékok biogáz célú hasznosítása:
· 7020 t/év mennyiségű szarvasmarha híg- és alomtrágya
A Kft. 2500 db szarvasmarhát és 1,8 millió brojler csirkét állít elő, melyek trágyatermelése lényegesen több, közel 30000 t/év. Sajnos a biogáz technológiája magasabb százalék arányú szalmástrágyát nem tud meghibásodás nélkül fogadni, ezért a különbözetként fennmaradó szalmástrágyát először komposztáljuk és a részben feltáródott komposztott kiegészítő anyagként használják fel a biogáz recepturában.
- Veszélyes hulladékok ártalmatlanítása hőkezeléssel és pasztőrözéssel történik:
· 20800 t/év a felhasználásra tervezett baromfi vágóhídi hulladék mennyisége
· 1716 t/év a sterilizált állati zsiradékok mennyisége
· 1430 t/év a nem fertőző betegségben elhullott állati tetem mennyisége.
A felhasználásra tervezett hulladék éves mennyisége 75000-100000 t/év.
Létesítmények:
1.
Nem veszélyes hulladék fogadó épület: 1000 m2, benne 2 db beadagoló keverő akna, melyek 4 m mélyek és 10 m átmérőjűek.
Ezekben az aknákban kerülnek fogadásra és homogenizálásra a napi mennyiségek.
2.
Veszélyes (állati eredetű) hulladék fogadó épülete és berendezése:
Ezekben a berendezésekben kerül fogadásra a vágóhídi hulladék, amit 15 mm-es méretre darálunk. A kellően aprított hulladék hőkezelés után a fermentorokba kerül.
3.
6 db mezofil fermentor:
Magasságuk 5 m, átmérőjük 18 m.
Tartózkodási idő: 2
8 nap.
Állandó hőmérséklet: 37
şC.
4.
6 db termofil fermentor:
Magasságuk 5 m, átmérőjük 20 m.
Tartózkodási idő 20 nap.
Állandó hőmérséklet: 55
şC.
A fermentorokba négyóránként kerül beadagolásra a homogenizált alapanyag. A berendezések úgy lettek elhelyezve, hogy a fogadó aknákból csak egyszer emeljük át szivattyúval a biomasszát, azt követően a fermentorokból már gravitációs úton megy tovább a mezofilból a termofilba, a termofilból pedig az utótározóba. Ezzel a technikai megoldással lényegesen olcsóbb az üzemeltetés.
A fermentorok belmagassága 5 m, melyből 4,2 m oszlopmagasságban helyezkedik el a biomassza és 0,8 m a gáztér. A metánbaktériumok által termelt biogáz itt képződik. A képződött gáz 2/3 része metán, 1/3 része széndioxid és ebben az állapotában magas a víztartalma. Az így képződött biogázt a fermentorok tetején elhelyezett 2 db gyűjtő gázcső szállítja a gázkezelőbe, majd a 2 db 1000 m
3-es gáztározóba.A fermentorokba biogáz érzékelők vannak elhelyezve, melyek a gázmennyiség emelkedésekor a gázt egy automatika segítségével a gázmérőn keresztül a gázkezelőbe irányítják.
A gázkezelőben a gáz hűtésével víztelenítést hajtunk végre. A naponta keletkező kondenzvíz mennyisége 40-60 literre tehető.A fermentorokban keletkező gáz összetételét egy gázanalizátor elemzi és méri a különböző gázok mennyiségét. Nagyon fontos, hogy a biogázban lévő kéntartalom 50 ppm alatt legyen.
A kén kiválasztását oxigén hozzáadásával irányítja a gázanalizátor. A kivált kénmennyiség a szubsztrátumba kerül és feloldódik.
5.
4 db átmeneti hígtrágya tároló tartály:
Magasságuk 5 m, átmérőjük 24 m.
A termelt biomassza zárt rendszeren keresztül jut át a tároló tartályba.
A 4 db tartálynak közel 10000 m3 a befogadó képessége.
A tartályokból a kierjesztett hígtrágya közvetlenül tartály
kocsiba tölthető, illetve egy nyomóközpont aknájába juttatható.
A nyomóközpontból a hígtrágyát egy 970 fm hosszúságú nyomócső közbeiktatásával juttatjuk el a már meglévő 1 m mélységbe épített földalatti nyomóhálózatba. A hálózatból a trágya közvetlenül kiöntözésre, illetve puffertárolókba juttatható.
A telepen található tárolók és külső puffertárolók összes befogadóképessége 29040 m3. A kikerülő hígtrágya szárazanyag tartalma igen csekély (2% körüli), ezért jó közelítéssel a naponta keletkező hígtrágya mennyisége 206 m3. Ennek megfelelően a tározó kapacitás 141 nap alatt keletkező fermentált anyag tárolására elegendő, mely a tilalmi időszakra eső mennyiséget biztonsággal befogadja.
6.
2 db gáztároló
Magasságuk 5 m, átmérőjük 16 m.
Térfogatuk 1000 m3 egyenként.
7.
3 db blokkfűtőmű
A gázmotorok gázfogyasztása egyenként 240 Nm3/h, azaz összesen 750 Nm3/h. A napi 14000 Nm3 elégetéséhez kb. 19-20 üzemórára van szükség. A gáztermelés napi 10-15000 m3 között ingadozik, az alapanyag összetételének és mennyiségének függvényében.A biogáz keletkezésének fluktuálását a gázballonok puffertározóként kiegyenlítik.
A várható gáztermelés növekedése miatt egy újabb 1000 kW-os gázmotort tervezünk vásárolni.
Az előkezelőből kikerülő 5 mbar nyomású gáz a gázsűrítőknek köszönhetően 50 mbar nyomáson jut el a gázmotorokhoz.
A betongyűrűvel és robbanótetővel ellátott gáztárolókban nyomásmérők vannak elhelyezve és amennyiben túlnyomás alakul ki, a gáz elfáklyázásra kerül.
A túlnyomást csak biztonságtechnikai okokból alkalmazzuk abban az esetben, ha a gázmotorok teljes kihasználtság mellett sem tudják elégetni a keletkező biogázt.
8.
Csurgalék víztározó: A biogáz üzem teljes területén zárt rendszerű a csurgalék víz gyűjtése. Az összegyűjtött vizet a tárolótartályokból átemelő szivattyúval visszanyomjuk a keverő tartályokba és hígító vízként használjuk fel.
Toxikus anyagok jelenléte és szabályozásuk: A toxikus hatások abban nyilvánulnak meg, hogy azok a fermentorokban a reakciókat katalizáló enzimekre hatnak.
- Az ammónia a protein lebontásából keletkezik. Ha a rendszerben az ammónia nitrogén koncentráció nagyobb mint 3000 mg/l az ammónium toxikus hatásúvá válik a Ph-ra való tekintet nélkül, ezáltal üzemzavar várható.
A megoldás a biomassza ammónia-nitrogén koncentráció hígítása.
- A szulfidok a biológiai folyamatok révén a szulfátok és egyéb kén tartalmú szerves vegyületek redukciójából, végül a protein deagrációból származnak.
Az oldott szulfidok 200 mg/l koncentráció felett toxikusak.
- A nehézfémek sok biogáz telep feldolgozását gátolják.
Az oldott állapotú réz, cink, nikkel és króm koncentrációi meglehetősen toxikusak. A toxikus állapot elkerülhető, ha az oldott nehézfémeket szulfidokkal oldhatatlan csapadékká alakítjuk át.
- Számos szerves anyag is toxikus az anaerob fermentáció szempontjából (oldószerek, alkoholok, hosszú láncú zsírsavak). A toxikus hatás elkerülhető a jó arányban összeállított alapanyag recepturával és Ph beállítással.
- Levegőszennyezés: A fermentáció - zárt technológiájának köszönhetően kis mértékű környezeti kockázattal jár. Közvetlen levegőt szennyező kibocsátás a fermentáció korai szakaszában van, míg a metántermelés nem indul meg, valamint a karbantartás megkezdésekor.
Összességében megállapítható tehát, hogy a biogáz termelést élő szervezetek végzik bonyolult biokémiai folyamatokon keresztül.Tervezésénél alaposan ki kell dolgozni nem csak a műszaki feltételeket, hanem az élőszervezet tápanyag ellátásához szükséges biomassza betáplálási rendszerét is.
Mi és a partnereink információkat – például sütiket – tárolunk egy eszközön vagy hozzáférünk az eszközön tárolt információkhoz, és személyes adatokat – például egyedi azonosítókat és az eszköz által küldött alapvető információkat – kezelünk személyre szabott hirdetések és tartalom nyújtásához, hirdetés- és tartalomméréshez, nézettségi adatok gyűjtéséhez, valamint termékek kifejlesztéséhez és a termékek javításához. Az Ön engedélyével mi és a partnereink eszközleolvasásos módszerrel szerzett pontos geolokációs adatokat és azonosítási információkat is felhasználhatunk. A megfelelő helyre kattintva hozzájárulhat ahhoz, hogy mi és a partnereink a fent leírtak szerint adatkezelést végezzünk. Másik lehetőségként a megfelelő helyre kattintva a hozzájárulás megadása előtt részletesebb információkhoz juthat, és megváltoztathatja beállításait.
Felhívjuk figyelmét, hogy személyes adatainak bizonyos kezeléséhez nem feltétlenül szükséges az Ön hozzájárulása, de jogában áll tiltakozni az ilyen jellegű adatkezelés ellen. A beállításai csak erre a weboldalra érvényesek. Erre a webhelyre visszatérve vagy az adatvédelmi szabályzatunk segítségével bármikor megváltoztathatja a beállításait.
A weboldalon a minőségi felhasználói élmény érdekében sütiket használunk.
A cookie-kat és hasonló technológiákat a következők elősegítésére használjuk:
Tartalmak szolgáltatása és fejlesztése a jobb felhasználói élmény elérése érdekében
Biztonságosabb használat lehetővé tétele a sütikből az általunk kapott adatok felhasználásával.
A Weblap termékeinek szolgáltatása és jobbá tétele a profillal rendelkezők számára
Ismerje meg tájékoztatónkat arról, hogy milyen sütiket használunk, vagy a beállítások résznél ki lehet kapcsolni a használatukat.
Jobban személyre tudjuk majd szabni a weboldal funkcióit.
Ez nem érinti a termékeink funkcióit.
Cookie-k használatával más vállalatok adatokhoz jutnak majd rólad.
A böngésződ vagy az eszközöd is kínálhat olyan beállításokat, amelyek segítségével eldöntheted, hogy be legyenek-e állítva a böngészőhöz cookie-k, illetve törölheted őket. Ezek a lehetőségek böngészőnként eltérnek, és fejlesztőik mind a rendelkezésre álló beállításokat, mind azok működését bármikor megváltoztathatják. 2020. október 5-i állapot szerint az alábbi hivatkozásokon találhatsz további információt a népszerű böngészőkben kínált beállítási lehetőségekről. A Facebook-termékek egy bizonyos része esetleg nem működik megfelelően, ha letiltottad a böngészőkben a cookie-kat. Fontos tudni, hogy ezek a beállítási lehetőségek eltérnek a Facebook által kínált beállítási lehetőségektől.