A biogáz csoportosítása
A biogáz tág fogalma miatt érdemes azt csoprtokba osztani. Az egyik legegyszerűbb besorolást a termelés helye jelenti. Ezek alapján három nagy csoportot tudunk megkülönboztetni:
depóniagáz (szeméttelepi gáz, a kommunális hulladékban lévő szerves anyag lebomlásából képződik)
szennyvíztelepi gáz (a szennyvíztelepeken képződő biogáz)
biogáz mezőgazdasági mellék/termékekből és egyéb szerves anyagokból (a biogáz szó alatt általában ezt értik)
Jelenlegi ismereteink szerint a metán előállításában a mikroszervezetek életfeltételeinek szabályozása a döntő tényező. Az optimális életfeltételek biztosítása mellett a mikroszervezetek ugyanis mértani haladvány szerint, gyorsan elszaporodnak. Jelenlétük – különösen hulladékok esetén – a gyakorlatban szinte kizárhatatlan. Egyfajta hulladékanyagban nagyon sokféle mikroorganizmus van jelen egyidejűleg, amelyek közül azok szaporodnak gyorsabban és válnak döntő többségűvé, amelyek számára az életfeltételek kedvezőbbek.
A biogázképződés teljes folyamata alapvetően két szakaszra oszlik; az első egy fermentációs biokémiai folyamat, amely a nagymolekulájú szerves anyagok lebontását, feltárását jelenti, a második a metánképződés biokémiai folyamata. Újabb kutatások szerint a kettő között van egy acetogén biokémiai folyamat is, ennek elkülönítése azonban inkább elméleti jelentőségű, mivel kimutatták, hogy az ehhez a közbeeső folyamathoz szükséges acetogén mikroszervezetek csak a metánképzőkkel szimbiózisban tudnak élni. Lényegében is elegendő, ha ezt a közbülső folyamatot a második szakasz részeként fogjuk fel.
A biokémiai folyamat két szakaszának megfelelően csoportosíthatók az annak végrehajtására képes baktériumok. A fermentatív folyamat végrehajtóit savképző baktériumoknak, a metánt termelő baktériumokat metanogén baktériumoknak nevezzük.
A metánképződési folyamatban közreműködő mikroorganizmusokról általában az a vélemény, hogy nagyon érzékenyek a mérgezésre. Az alapanyagokban előforduló toxikus anyagok gyors aktivitáscsökkenést eredményeznek. Újabb kutatások szerint azonban rövidebb ideig elviselik a toxikus hatást, és ha kellően felhígul vagy kicserélődik a tápanyag, a populáció újra aktiválódik, tehát nem pusztulnak el a mikroszervezetek kisebb dózistól viszonylag rövid periódus alatt.
A biogázelőállítás mikrobiológiai folyamatainak és technológiáinak legfontosabb rendező tényezője a hőmérséklet. A mikroszervezetek más-más csoportja jellemző a mezofil – 30–35 °C-on legaktívabb – hőmérséklettartományban. Az anaerob fermentáció szélső értékeit 5 – 66 °C-ban szokták megjelölni. A mezofil baktériumok 32 – 42°C között tevékenyek, a termofilok 50 – 57°C között. (Olessák, 1984.)
Mely anyagokat lehet biogáztermelésre használni?
Biogáz minden a baktériumok által könnyen bontható szerves anyagból képződhet. A mezőgazdasági biogáz üzemekben többnyire a hígtrágyát és almos trágyát használják, mint alapanyagot (szubsztrátumot). A szarvasmarha hígtrágyája nagy pufferkapacitása miatt a biológiai folyamatokat optimális körülmények (pH) között tudja tartani. Ezért a németországi biogázüzemek több mint ⅔-a ezt a trágyaféleséget használja. Emellett más anyagokat is felhasználhatunk a biogáztermelés növelésére. Így a mezőgazdaságból származó termékeket, mint például a kukoricát, gabonaféléket vagy a gyepet. Lehetőség nyílik az ugaroltatott területeken energianövények termesztésére, amit szintén a biogáz üzem tud hasznosítani. Az élelmiszeriparból származó melléktermékek is feldolgozásra kerülhetnek (pl. vágóhídi hulladék, zsírleválasztó maradék, törköly, cukorrépaszelet, stb.). A területgondozásból származó zöld vágási hulladék, a válogatott kommunális hulladékok szerves része, az éttermi hulladék és a szennyvíziszap (ld. 2. ábra ) is alkalmas biogáztermelésre. A nem mezőgazdasági termékek használatával bár a természetes körfolyamatok le lesznek zárva, mégis káros anyagok (többnyire nehézfémek) kerülhetnek a földekre. A károkozás megelőzése miatt fontos, hogy a hatályos törvényeket a hígtrágya- valamint a szerves anyagok kezeléséről betartsuk.
Néhány anyag elméleti gázkihozatalát mutatja a 2. ábra. Érdemes a tisztítószerek, fertőtlenítőszerek és egyes gyógyszerek (főleg antibiotikumok) biogáz üzembe történő kerülését megakadályozni, mert azok a lebontási folyamatokat zavarják. A túlzottan magas ammónium koncentrációt is meg kell előzni, mert az a metánképződést károsan befolyásolja. Ezért a baromfi és sertés trágyát csak hígítva szabad felhasználni. Ha a bejuttatott anyagok szárazanyag tartalma a 15-20%-ot meghaladja, szintén hígítani kell azokat, mert szivattyúzhatóságukat elveszítik.
A biogáztermelés érzékeny mikrobiológiai folyamata csak akkor lesz biztonságos ha állandóan, közel azonos minőségű alapanyagokat tudunk biztosítani a baktériumoknak, azonos arányban, nagy változtatások nélkül. A változó összetételű és arányú szubsztrátumok a biológiai folyamatokat felboríthatják. Ezért alkalmaznak sok mezőgazdasági biogázüzemben tartósított tömeg takarmányokat (szilázs).
Hogyan működik egy biogáz üzem és milyen technológiával?
A mezőgazdasági biogáz üzemek általában egy előtároló tartályból, egy vagy több fermentorból (biogáz-reaktor) és utótárolóból állnak. Ha a biogáz erőműben szilárd szerves anyagok is felhasználásra kerülnek, akkor ezek aprítása, hígítása, homogenizálása és higienizálása a fermentorba történő bejuttatás előtt történik meg. A fermentorban a szerves anyagokat baktériumok bontják le, levegőtől elzártan. Az itt képződött biogáz felhasználása előtt tisztításon esik át, majd rövid ideig tárolják, mielőtt egy blokkfűtőerőműben elégetnék és elektromos áramot, hőt termelnének belőle.
A szubsztrátumok áramlása alapján két nagy típusát különböztetjük meg az erőműveknek. Az átfolyó rendszerű üzemekben a reaktorba szakaszosan, meghatározott időközönként, kis mennyiségben bekerülő friss szubsztrátummal megegyező mennyiségű, már kierjesztett anyag hagyja el a rothasztóteret. A tároló rendszerű üzemekben a friss és kierjesztett anyagok ugyanabban a rothasztótérben maradnak, amíg azt ki nem ürítik. Ezek általában egyszerű hígtrágyatárolók biogáztermelésre átalakítva.
A biogáz erőmű fontosabb részei
Az előtárolóban a fermentorokba bekerülő hígtrágyát, szilárd szerves anyagokat keverik el egymással, itt megtörténhet az aprítás is. A biológiai folyamatok közül a hidrolízis itt már elkezdődik, melynek következtében a fermentorokban a biogázképződés folyamata felgyorsulhat. Ez a keverék a biogáz-reaktorba jut. Újabb rendszerekben a szubsztrátumokat közvetlenül a fermentorba juttatják be, s az egyes anyagok elegyítése itt történik meg. Ez a biogáz reaktor az erőmű egyik fő része. Készülhet betonból vagy fémből, lehet álló vagy fekvő típusú, téglatest vagy hengeres formájú. Meghatározó, hogy a bioreaktor jól tömített, víz és gázálló legyen. Egy keverő-berendezés segítségével a szubsztrátumok jól elegyíthetők, valamint a kiindulási anyagoktól függően nem képződik úszó- vagy ülepedő réteg. A fermentorban a folyadék felületén képződő úszó kéreg a biológiai folyamatok stabilitását veszélyezteti. Abban az esetben, ha sok szilárd anyag ülepszik le a fermentor aljára, azt onnan el kell távolítani.
A fermentor fűtése gondoskodik a biológiai folyamatok megfelelő lefolyásához szükséges hőmérsékletről. A biogázképzésben résztvevő baktériumokat a számukra optimális hőmérséklettartományok alapján három csoportba osztjuk: a pszichrofil baktériumok kb. 25 oC -ig működnek, a biogáztermelésük igen alacsony. A mezofil tartomány 32 és 42 oC között helyezkedik el. Ebben a tartományban a baktériumok igen aktívak, képesek a nagyobb hőmérséklet-ingadozásokat is elviselni a gáztermelés csökkenése nélkül. A termofil tartományban, optimum 50 - 57 oC, a baktériumok gáztermelése nagyobb, mint a mezofilben, de az érzékenységük is a hőmérsékletváltozásra igen nagy. Az átlagos fermentorméret 100 számosállat esetén 200-250 m3 között alakul.
A kierjesztett anyagok az utótárolóba kerülnek. Abban az esetben, ha az utótároló fedett és fűtött, utóerjesztőről beszélünk. A még képződő biogáz felfogásra kerül, és az energiatermelés folyamatában vesz részt. Ennek előnye, hogy a még lebontható maradék szerves anyagok egy része hasznosításra kerül, hátránya, hogy a tároló fűtését meg kell oldani. Az utótároló méretét úgy kell kialakítani, hogy az a legalább 4 hónap alatt keletkező erjesztési maradék mennyiségét képes legyen befogadni (49/2001. Kormányrendelet).
Abban az esetben, ha a biogázerőműben állati eredetű hulladék is ártalmatlanításra kerül, akkor a 71/2003 (VI. 27.) FVM rendeletnek megfelelően azt kezelni kell.
A biogáz kezelése
A reaktorokban képződött biogázt a termelés kiegyenlítetlensége miatt gáztárolóban ideiglenesen raktározzák. A gáztárolók a gázmotorok folyamatos gázellátását hivatottak biztosítani. Anyaguk gázt át nem eresztő fólia, amit zsákszerűen a fermentorok feletti tetőtérben vagy egy könnyűszerkezetes fémtoronyban helyeznek el, egyre több esetben a fermentorok légterét kettős fóliakupolával zárják le hermetikusan.
Mielőtt a gázt a motorokban elégetjük, a szennyező részecskéktől és anyagoktól meg kell azt tisztítanunk. A blokkfűtőerőművek jó állapotának megőrzése érdekében a gázból a kénhidrogént el kell távolítani. Ez a gáz a motorok korróziójához járul hozzá, a motorok alkalmazási ideje és hatásfoka a magas kénhidrogén tartalomtól nagymértékben romlik. A mezőgazdasági erőművekben gyakran alkalmazott technológia, hogy a fermentorok légterébe 3-5% levegőt juttatnak, aminek köszönhetően az ott élő baktériumok a kénhidrogént kénné alakítják, s a gáz megfelelő minőségű lesz a felhasználásra. A biogáz-reaktorokon kívül elhelyezett kéntelenítőkben is baktériumok segítségével történik a gázelőkészítés. Ezekkel a technológiákkal a kénhidrogén 95%-a is eltávolítható a biogázból. A biológiai folyamatok helyett még alkalmaznak gázmosásos és aktív szenes szűrési rendszereket is.
A gáz nedvességtartalmának csökkentése érdekében a talajba lefektetett gázvezetékeken keresztül a gázt lehűtik, a víz kicsapódik belőle. A motorba juttatás előtt ismét felmelegítve megfelelően szárazzá válik a gáz és nem rongálja a motort.
Mérő- és irányítótechnológia, biztonság
A biogáz termelési folyamat biztonsága érdekében bizonyos paraméterek mérése fontos a biogáz erőműben. Így a fermentorokban uralkodó hőmérséklet, pH, a képződött gáz mennyisége, metán és kénhidrogén tartalmának ismerete elengedhetetlenül fontos. Ezen értékek mérése elektromos eszközökkel folyamatosan és nagy pontossággal megoldható, kiértékelhető. További paraméterek mérése, mint például a felhasznált alapanyagok, a megtermelt elektromos áram pontos mennyisége és bizonyos laboratóriumi vizsgálatok rendszeres elvégzése, az előbbiekben felsorolt alapadatokon felül, a biztos termelés változását előre jelezhetik.
A megtermelt, de fel nem használható és már nem is tárolható gáz elégetésére gázfáklya van felszerelve a biogáz erőművekre – a környezet védelme érdekében.
Az üzemek biztonsága miatt fontos, hogy a fermentortérbe juttatott levegő mennyisége ne legyen 10%-nál több, mert az robbanást okozhat. Egyéb alapvető biztonsági előírások betartása esetén a biogáz erőművek nem jelentenek a környezetükre veszélyt.
A biogáz felhasználása
A megtisztított, kéntelenített biogáz a földgázhoz hasonlóan többféle módon is alkalmazható. Egy m3 biogáz (kb 60% metán tartalom) energiatartalma 0,6 l fűtőolajéval vagy 0,6 m3 földgázéval egyenlő.
A modern blokkfűtőerőművekben a biogáz elégetésével elektromos áram és hő képződik. Az elektromos áramot a Villamosenergia törvény értelmében a hálózat üzemeltetője köteles átvenni, s a törvényben meghatározott átvételi árat érte megfizetni. A keletkezett hő egy része a fermentorok fűtéséhez szükséges. Ez éves szinten a megtermelt hőmennyiség 20-30%-a. A megmaradó hő felhasználásra kerülhet. Az erőművek felesleges hőjét hasznosíthatja a mezőgazdasági üzem istállók, lakóépületek, kertészetek, szárítók fűtésére, nyáron az állattartó telepek hűtésére. Távhőfűtő-hálózaton keresztül az üzemtől távolabb fekvő épületek fűtése is megoldható. Élelmiszeripari üzemek melegvíz igényét is kielégítheti egy biogázüzem.
A biogáz blokkfűtőerőműben történő elégetésére többféle motorfajta áll rendelkezésre. Két igen elterjedt típus van forgalomban: dieselmotor olaj-befecskendezéssel és Otto gázmotor. Az Otto gázmotorok drágák, de magasabb elektromos hatásfokkal rendelkeznek, mint a dieselmotorok olaj-befecskendezéssel, s működésükhöz fűtőolaj nem szükséges. A két motortípus összehasonlítása az 1. táblázatban található. A blokkfűtőerőművek vásárlásakor a lehető legnagyobb elektromos hatásfokra (jelenleg 36-40% motortípustól függően) kell törekedni.
Azokban az erőművekben, ahol a gáz minősége folyamatosan változik, a hosszabb motorélettartam érdekében érdemes elektronikus motorirányító és ellenőrző rendszereket alkalmazni.
Jellemző | Otto gázmotor | Dieselmotor olaj-befecskendezéssel |
Teljesítmény (elektromos) | 1 MW-ig, néha 100 kW alatt | 30 - 250 kW (10% fűtőolaj befecskendezéssel) |
Hatásfok (elektromos) | 34-40% | 30-40% |
Üzemidő | 60000 üzemóra | 35000 üzemóra |
Biogáz minimális metántartalma | 45% | Nincs |
Szerviz | Ritka | Gyakori |
Előny | <!--[if !supportLists]-->· <!--[endif]-->kifejezetten gázhasznosításra tervezett <!--[if !supportLists]-->· <!--[endif]-->alacsony károsanyag kibocsátás | alacsonyabb teljesítmény intervallumban magasabb hatásfok |
Hátrány | <!--[if !supportLists]-->· <!--[endif]-->alacsony teljesítmény intervallumban alacsonyabb hatásfok | <!--[if !supportLists]-->· <!--[endif]-->kiegészítő tüzelőanyag felhasználás <!--[if !supportLists]-->· <!--[endif]-->károsanyag kibocsátás magas <!--[if !supportLists]-->· <!--[endif]-->10% fűtőolaj használat a biogáz teljes energitartalmából |
Különlegességek | <!--[if !supportLists]-->· <!--[endif]-->teljesítmény-szabályozás a gáz energiatartalmától függően megoldható <!--[if !supportLists]-->· <!--[endif]-->a túlmelegedés elkerülésére biztonsági hűtő használata kötelező | |
Biogázt helyettesítő energiaforrás | Földgáz | fűtőolaj, növényi olaj |
1. táblázat Az egyes motorfajták főbb jellemzői
A biogáz alaposabb tisztításával, a CO2 eltávolításával kapott gázelegy már alkalmas gépjárművek meghajtására is. Svédországban már nemcsak személyautók és buszok, hanem vonatok üzemeltetésére is használják a biogázt. Ugyanez a megtisztított gáz alkalmas a földgázhálózatba történő betáplálásra is, ami Németországban és Ausztriában jelenleg még kísérletei fázisban van. A biogáz mikro-gázturbinákban és üzemanyagcellákban is felhasználható.
A biogáztermelés ökológiai előnyei
A biogázból történő energiatermelés során nem kerül többlet CO2 a levegőbe, a fosszilis energiahordozók használatával ellentétben. Az elektromos áram és hő előállítása biogázból CO2 semleges. Ami annyit jelent, hogy a biogáz elégetésekor keletkezett CO2 mennyisége bizonyosan nem nagyobb a felhasznált növények fejlődése során a légkörből megkötött szén-dioxid mennyiségénél A mezőgazdasági melléktermékek, trágyák fermentálása során a CO2-nél 21-szer károsabb üvegházhatású gáz, a metán légkörbe jutását lehet elkerülni, ezzel is elősegítve a klímaváltozás lassulását.
A szerves trágyák anaerob lebontása során a kellemetlen szaghatások csökkennek, így kijuttatáskor a szagintenzitás nem erős. Mindemellett a trágyában található patogén szervezetek nagy része egyhónapos termofil fermentáció után elpusztul. A biogáz üzem ezzel is elősegíti azt, hogy a termőföldekre ne kerülhessenek ki az egészségre káros anyagok. A reaktorokba bejuttatott lebontható anyagok mennyisége átlagosan 25-30%-kal csökken. Ebből következik, hogy az erjesztési maradék hígan folyós, a kijuttatása a termőföldre egyszerűbbé válik. A trágya összetétele is előnyösen változik (C:N arány), valamint a nitrogén és foszfor mineralizált formába kerül, a talajba juttatva a növények számára közvetlenül felvehetőek. A gazdaságok műtrágya felhasználása ezáltal jelentős mértékben csökken. Ezzel együtt a műtrágyagyártáshoz szükséges fosszilis energiahordozók használata is csökken. Egy kg nitrogén műtrágya előállításához 1 l fűtőolajra van szükség. (Foszfor: 0,45l, kálium: 0,27l)
A biogáztermelés természetes körfolyamatot valósít meg, melyben az energiatermelés fontos helyet foglal el, azonban úgy, hogy környezetünket nem terheli üvegházhatású gázokkal. A növények által megkötött napenergia kerül átalakításra elektromos árammá, ahol a képződött anyagok a későbbiekben az újabb növényeknek jelentenek tápanyagot.
Törvényi szabályozás
A villamos energiáról szóló 2005-ben módosított 2001. évi CX. törvény biztosítja a megújuló erőforrásokból megtermelt energia kötelező átvételét, valamint szabályozza annak módját. A törvény meghatározza a megújuló energiaforrásokból származó elektromos áram minimális átvételi árát, mely 23 Ft/kWh. Ennek értéke minden év január 1-jén az előző évi, KSH által közzétett fogyasztói árindex változással azonos mértékben növekszik 2010-ig. Az elektromos áram átvételének pontos körülményeit a többször módosított 56/2002. (XII. 29.) GKM rendelet szabja meg. Itt megtalálható az egyes átvételi időszakok pontos ára is (2. táblázat).
Csúcs | Völgy | Mélyvölgy |
27,06 Ft | 23,83 Ft | 9,72 Ft |
2. táblázat Az elektromos áram kötelező átvételi ára
A biogázüzemekben képződött erjesztési maradék tárolására a 49/2001. (IV. 3.) Korm. rendelet a vizek mezőgazdasági eredetű nitrátszennyezéssel szembeni védelméről; 1.sz melléklet, 6.1. pontja alkalmazható. Ennek értelmében 4 hónap alatt képződött trágya mennyiséget el kell tudni tárolni az üzemben. Ez a hígtrágya kijuttatási tilalom miatt is szükséges időtartam.
Koszubsztrátumok hasznosítása esetén az Európai Parlament és Tanács 1774/2002/EK rendelete alkalmazandó. A nem emberi fogyasztásra szánt állati melléktermékeket a rendelet kategóriákba csoportosítja, ami az egyes kezelési és hasznosítási formákat meghatározza. A 71/2003. (VI. 27.) FVM rendelet alkalmazza ezt a rendeletet. Ez alapján, biogáz üzemekben csak a 2. és 3. kategóriába tartozó anyagok hasznosíthatóak. A 2. kategóriába tartozó anyagokat, mint pl. a vágóhídi hulladékot, 133 oC -on, 2 bar nyomáson 20 percig tartó kezelés után lehet a fermentorokba bejuttatni, amennyiben a törvényben előírt vizsgálatoknak megfelel. Bár a hígtrágya, trágya is ebbe a kategóriába tartozik, a kezelés alól kivételt képeznek. A 3. kategóriás anyagokat, mint például a konyhai hulladékok, élelmiszermaradékok, 70 oC-on 60 percig légköri nyomáson kell kezelni. A koszubsztrátumok alkalmazásához még számos kritériumnak kell megfelelni, melyet többek között a 23/2003 (XII 29.) KvVM rendeletet szabályoz. Így pl. a szállító és tároló berendezések megfelelő tisztítása, az üzem elkerítése, állattartó telepektől megfelelő távolság tartása, a kezelési hőmérséklet pontos ellenőrzése.
A fermentáció végén megmaradt anyagokat laboratóriumi vizsgálatok alá kell vonni, amennyiben a törvényben meghatározott patogén anyagoktól mentes a lebontási maradék, csak akkor szabad a termőföldre kijuttatni.
Mikor lesz egy biogázüzem gazdaságos?
Azon biogáz üzemekben, ahol kizárólag hígtrágya hasznosítás történik, a beruházási költségek 150-300 eFt körül alakulnak számosállatonként. Abban az esetben, ha már mezőgazdasági termékek is az energiatermelés szolgálatába lesznek állítva, az 1 kW elektromos teljesítmény költsége 750 ezer és 1 m Ft közötti.
Ha a biogáz erőműnek különleges feladatokat is el kell látnia, mint például hulladékkezelés, a beruházás még drágább lehet. Általános szabályként elmondható azonban, hogy a teljesítmény növekedésével az 1 kW-ra vetített költségek csökkennek.
A költségeket csökkentheti, ha nagy mennyiségben gyártható elemekből épül fel az üzem, ill. egyszerű technológiát alkalmazunk. Az olcsó kivitelezés, bizonyos elemek kihagyása azonban a termelés biztonságát veszélyeztetik, s bár rövid távon megtakarítást jelentenek, hosszú távon nagyobb veszteséget okozhatnak az üzemeltetőnek.
A biogáz üzemekben a felhasznált anyagok bekerülési árán felül a blokkfűtőerőmű és a fermentorok gépi berendezéseinek karbantartása okozza a legnagyobb költséget évente. Mindemellett számolni kell a következő költségtényezőkkel is: munkabér, biztosítás, a gázmotor által felhasznált kenőanyag, biotechnológiai szervíz, a lebontási maradék tárolása és kihelyezése termőföldre.
Az erőművek munkaerőigénye mérettől függően napi 1-4 óra, mely a szubsztrátumok szállítását és az általánosan elvégzendő ellenőrzési feladatokat is magába foglalja.
A csak mezőgazdasági termékeket feldolgozó üzemekben a biogáztermelés gazdaságosságát főként a megtermelt elektromos áram mennyisége határozza meg. A gázmotor és a füstgázok hűtéséből keletkező hőenergia hasznosítását fontos a tervezéskor mérlegelni, mert az növeli az erőmű bevételeit. A képződött lebontási maradék értékét is figyelembe kell venni a számítások alkalmával, mert így az alapanyagok termelési költségeit lehet csökkenteni. Az üzem földterületeinek elhelyezkedése is hatással van a pozitív mérlegre, ha az alapanyagok és végtermékek szállítási költsége alacsonyan tartható.
A már meglévő tárolókat, silókat is hasznosítani lehet a szubsztrátumok elhelyezésére, ami a beruházás összegét kellő mértékben csökkentheti.
A blokkfűtőerőművek hatásfoka, üzemideje a termelés szempontjából igen fontos. Általában 7500 olyan üzemórával lehet éves szinten számolni, amikor az erőmű a névleges teljesítményen, azaz 100%-os hatásfokon termel. Évente átlagosan 5 napot kell a motor karbantartására fenntartani, a fennmaradó időben is ingadozhat az erőmű teljesítménye. Otto gázmotor generál felújítással 60000 óra üzemidőt képes működni, míg az olaj-befecskendezésű diesel motor esetén ez már csak 35000 óra. A motorok kiválasztásánál a legfontosabb szempont az elektromos hatásfok, valamint az 1 kWh megtermelt elektromos áram költsége (javítás, üzemanyag).
A gazdaságos termeléshez azonban a jól képzett üzemeltető nélkülözhetetlen, aki a biogáztermelés érzékeny folyamatát megfelelő módon tudja irányítani.
Kérdések és válaszok
Miért van ilyen kevés biogáz üzem Magyarországon?
Európában közvetlen összefüggés figyelhető meg a biogáz üzemek száma és a kormányzatok gazdaságpolitikája között. A biogáz ipar elsősorban azokban az országokban (pl. Németország, Ausztria, Dánia, Csehország) fejlett, ahol a gazdasági kormányzat hatékonyan támogatja a megújuló energiahordozók fokozott felhasználását és a környezetvédelmet. Más európai országokban (mint például Angliában, Franciaországban) alig találni mezőgazdasági biogáz üzemeket, viszont nagyon fejlett a depóniagáz hasznosítása és a szennyvíziszap rothasztása.
A magyarországi helyzetre az jellemző, hogy a kormányzati támogatás jelen van, azonban annak formája és mértéke egyelőre nem elegendő a lényeges előrelépés eléréséhez. A Magyar Biogáz Egyesület egyik alapvető célkitűzése, hogy a biogáz technológia által kínált energiaellátási, környezetvédelmi és talajgazdálkodási előnyök tudatosítása révén hozzájáruljon a kedvező gazdasági környezet megteremtéséhez.
Hány biogáz üzem van Magyarországon?
Magyarországon jelenleg nagyon kevés biogáz üzem van. A működő mintegy 15 üzem túlnyomó többsége a szennyvíziszap kezelésére jött létre. Egyetlen biogáz üzem (Bátorcoop, Nyírbátor) dolgoz fel mezőgazdasági hulladék anyagokat.
Büdös a biogáz üzem?
A biogáz üzem fegyelmezett működtetés mellett a környezetbe semmilyen kellemetlen szagot nem bocsát ki. A lebomlás során keletkezett kénhidrogént általában biotechnológiai módszerekkel az üzemen belül semlegesítik. Az egyetlen kellemetlen szagforrást a bekerülő anyagok (trágya, szerves hulladék, stb.) jelentik. Ennek kiküszöbölésére a trágya továbbítása általában zárt rendszerben történik, a beszállított szerves hulladékot pedig olyan csarnokban rakják le és keverik be, amely biofilteren keresztül szellőzik.
A trágyát feldolgozó biogáz üzemek egyértelműen csökkentik a környezeti szagártalmat annak révén, hogy a biogáz üzemből kikerülő biotrágya gyakorlatilag szagmentes.
Milyen méretűek a biogáz üzemek?
Az ipari biogáz üzemek mérete többféle paraméterrel is jellemezhető. A gyakorlatban legáltalánosabb a beépített elektromos teljesítmény megadása. Ebből a szempontból jellemző adat Németországból: a 2000-ben beindított biogáz üzemek átlagos mérete 70 kW, a 2002-ben átadott üzemeké 330 kW volt.
A biogáz üzemek mérete jól érzékelhető a fermentorok térfogatának megadásával is. 1500 m3 összes fermentor térfogat alatt kisebb méretű üzemről beszélünk, a 3000 m3-nél nagyobb össztérfogatú üzemek a nagy méretűek közé számítanak. A Bátorcoop nyírbátori biogáz üzeme Európa legnagyobb fermentor össsztérfogatával rendelkezik (18000 m3).
A modern biogáz üzemek méretének alsó határát a biogázt elégető berendezések minimális mérete (10-15 kW elektromos teljesítmény) határozza meg. Ennek alapján az mondható, hogy 50-70 számosállat (500 kg súlyú állat) alatti méretű gazdaságokban nem célszerű a trágya feldolgozására biogáz üzemet létesíteni akkor, ha nincs jelentős mennyiségű egyéb szerves hulladék.
Kell-e különleges képzettség egy biogáz üzem működtetéséhez?
A legegyszerűbb berendezéseket a Távol-Keleten mindenféle szakértelem nélkül, tapasztalati úton szerzett gyakorlattal működtetik a helyi lakosok. A modernebb biogáz üzemek működtetéséhez sem kell különleges képzettség, ami abból is látható, hogy számos német, osztrák és egyéb nemzetiségű farmer saját maga üzemeltet biogáz berendezést gazdaságában. Természetesen szükség van a technológiai alapismeretek elsajátítására, valamint az üzemben működő gépek (szivattyúk, keverők, kogenerációs berendezések) működtetéséhez szükséges ismeretekre.
Veszélyes a biogáz üzem?
A biogáz üzem egy zárt rendszer, az ott keletkező metán zárt rendszerben elégetésre kerül, így az üzemvitel kellő gondossága mellett a kiszolgáló személyzetre és a környezetre semmi veszély nem hárul.
A biogáz üzemek a légkörinél alig valamivel magasabb nyomás alatt üzemelnek.
Miben jobb egy biogáz üzem a komposztálásnál?
A levegő oxigénjének jelenlétében végbemenő komposztálás során a szerves anyagokban lévő energia jelentős része a rothadó hulladék higienizálására kerül felhasználásra és csak 5-7 %-a szolgálja új biomassza létrehozását (azaz a sejtnövekedést). Ezzel szemben a biogáz üzemek oxigéntől elzárt közegében a feldolgozott szerves anyagokból felszabaduló energiának csak mintegy 40% adja a lebomláshoz szükséges hőt, 60% megújuló energia létrehozására (azaz biogáz termelésre) fordítódik. Ennek következtében az energiaátalakítás a biogáz üzemekben lényegesen hatékonyabb. Ennek következtében a biogáz üzemi feldolgozást kell előnyben részesíteni mindazon szerves hulladékok esetében, amelyek erre alkalmasak. Ilyenek elsősorban a nagy nedvességtartalmú és folyékony halmazállapotú hulladékok.
Másrészről a biogáz üzemek nem képesek a lignin lebontására, így faanyagok esetében az elégetést vagy a komposztálást kell választani. A lassú biomassza képződés a komposztálás során magas szerves anyag koncentrációt igényel és a lebomlás lassúságát eredményezi, ezért a komposztálásra továbbra is szükség van szilárd halmazállapotú és magas koncentrációjú szerves hulladékok kezelésénél.
Kapcsolat:
Magyar Biogáz Egyesület
Elnök: Prof. Dr. Kovács Kornél
Titkárság: 1028 Budapest, Kertváros u. 63.
Levelezési cím: 1276 Budapest , Pf. 81.
tel:06 1/32-32-200
fax:06 1/32-32-201
e-mail: titkarsag@biogas.huEz az e-mail cím védett a spamkeresőktől, engedélyezni kell a Javascript használatát a megtekintéshez
Fontos weboldalak:
Hatóságok
Földművelésügyi és Vidékfejlesztési Minisztérium - https://www.fvm.hu/
Gazdasági és Közlekedési Minisztérium - https://www.gkm.gov.hu/
Környezetvédelmi és Vízügyi Minisztérium - https://www.kvvm.hu/
Magyar Energia Hivatal - https://www.eh.gov.hu/
Egyéb hasznos címek
Bioenergia - https://bioenergia.lap.hu/
Biogáz Fórum - https://www.biogaz-forum.hu/
Energiaközpont Kht. - https://www.energiakozpont.hu/
Magyar Biomassza Társaság – https://www.mbmt.hu/
Magyar Energetikai Társaság - https://www.met.mtesz.hu/
Német Biogáz Egyesület - https://www.biogas.org/
Ajánlott irodalom:
Dr. Bai Attila et al.: A biogáz előállítása – Jelen és jövő. Szaktudás Kiadó Ház, Budapest 2005.
Heinz Schulz-Barbara Eder: Biogázgyártás. Cser Kiadó, Budapest 2005.
Dr. Bai Attila et al.: A biomassza felhasználása. Szaktudás Kiadó Ház, Budapest 2002.
Barótfi István et al.: Környezettechnika. Mezőgazda Kiadó, Budapest 2000.
Handreichung Biogasgewinnung und –nutzung. FNR, Gülzow 2005.
Forrás: Biogáz Fórum